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Abstract. The Hamiltonian for a system of two coupled oscillators with time-dependent
coupling parameter and the phase pump is considered. The wavefunction in Schrödinger
picture and the Green function are calculated. The squeezing phenomena as well as the Glauber
second-order correlation function is discussed. Statistical investigation for the quasi-probability
distribution function (P -representation,W -Wigner andQ-functions) are given.

1. Introduction

The problem of a frequency converter and a parametric amplifier, where three
electromagnetic fields are coupled [1–8] represents one of the relevant problem to the field
of quantum optics. This problem represents an important nonlinear parametric interaction,
which has played a significant role in several physical phenomena of interest, such as
stimulated and spontaneous emissions of radiation, coherent Raman and Brillouin scattering.
In Brillouin scattering one finds that an intense monochromatic laser source induces
parametric coupling between the two scattered electromagnetic fields and the acoustical
phonons in the scattering medium. In Raman scattering a similar coupling occurs between
the scattered Stokes and anti-Stokes waves and the optical phonons of a Raman active
medium [3, 5, 8]. The most familiar Hamiltonian representing such a system is given by

H

h̄
= ω1a

†a + ω2b
†b + ω3c

†c + k(ab†c† + a†bc) . (1.1)

Equation (1.1) can be looked upon as a frequency converter model in which the idler photon
is the sum frequency of a laser photon and a signal photon, provided we identifya(t), b(t)

andc(t) as the annihilation operators of the idler, signal and laser modes, respectively. It is
interesting to note that if one takesJ+ = ba†, J− = b†a, whereJ is the collective angular
momentum operator, the Hamiltonian (1.1) can be compared with the Hamiltonian which
represents coherent emission from a system ofN two-level atoms interacting with a single
mode of the radiation field. The Hamiltonian representing such a system takes the form

H

h̄
= ωc†c + 1

2
ω0Jz + k(cJ+ + c†J−) (1.2)

which is known as the Tavis–Cummings model [9].
To discuss the dynamical behaviour of the above system (equations (1.1) or (1.2)) one

needs to solve either the Heisenberg or the Schrödinger equations. However, as a result
of the existence of the nonlinearity terms in the interaction part of the Hamiltonians, the
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solution cannot be an easy task to find. Nevertheless, under certain approximations the
above equations can be linearized. For example, equation (1.1) can be linearized if one
takes the laser mode to be in a coherent state, and of sufficient intensity that we may
neglect the reaction of the nonlinear coupling back on the state of this mode. In this
parametric approximation, the field operators for the laser mode may be replaced by their
expectation values, such that

c(t) → c̄(t) exp(−iφ(t)) (1.3)

and hence (1.1) becomes

H

h̄
= ω1a

†a + ω2b
†b + λ(t)

(
ab†eiφ(t) + a†be−iφ(t)

)
. (1.4)

On the other hand, if one uses the Holstein–Primakoff transformation [10]

J− =
√
J − n̂b be−iφ(t) (1.5a)

J+ = b†√J − n̂b eiφ(t) (1.5b)

and

n̂b = b†b = 1
2(J + Jz) . (1.5c)

The Hamiltonian (1.2) can also be linearized if we approximaten̂b with its c-number time-
dependent functionnb(t), this approximation is applicable if̂nb−nb can be treated as small
perturbations. In this case equation (1.2) takes a form similar to that given by equation (1.4);
for more details see [11–14]. It is noteworthy that the authors in [15, 16] considered the
same Hamiltonian (1.4) in order to discuss the finite coherence time of a continuous laser
pump. These authors have allowed the pump amplitude and phase to be arbitrary time-
dependent functions rather than constants. Since the time-dependent Hamiltonian model
does not acquire any dispersion processes, the commutation relation for the operatorsa and
b with their conjugate are therefore preserved under the present Hamiltonian and satisfy

[a, a†] = 1 = [b, b†] (1.6a)

[a, b] = 0 = [a†, b†]. (1.6b)

In previous literature the problem of two coupled oscillators have been extensively
considered by many authors, with the emphasis on discussion of the statistical properties,
such as the photon number, as well as theP -representation [17–19]. Most workers have
used the solution of the Heisenberg equations of motion, taking the coupling parameter
λ(t) to be constant, and the phase pumpφ(t) = ωt . In the present paper we shall handle
the same problem, but without any restriction on either the coupling parameterλ(t) or
the phaseφ(t), except for the integrability condition, which we shall impose in order to
find the general solution of the problem. The problem will be considered in two different
parts. The first is to find the solution in the Schrödinger picture as well as the accurate
definition of the Dirac operator where the Hamiltonian (1.4) can be diagonalized; we shall
also consider the calculation of the Green function: this will be done in sections 2 and 3,
respectively. In the second part we shall fill the gap left in [14] by devoting section 4 to
discussing the squeezing phenomenon, using the correlated squeezed operator model as well
as even coherent states. Also we shall extend our discussion to include the second-order
correlation functiong(2)(t); this will be given in section 5. In section 6 we shall consider
the quasi-probability distribution functions; our conclusions follow in section 7.
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2. The Schr̈odinger wavefunction

In this section we shall pay attention to find the exact solution of the wavefunction in the
Schr̈odinger picture (pseudo-stationary state), for the Hamiltonian (1.4). To do so, we shall
introduce two pairs of Dirac operators, namely

a = (2h̄ω1)
− 1

2 (ω1q1 + ip1) (2.1a)

b = (2h̄ω2)
− 1

2 (ω2q2 + ip2) . (2.1b)

From equations (1.4) and (2.1) we have

H = 1

2
(p2

1 + p2
2)+ 1

2
(ω2

1q
2
1 + ω2

2q
2
2)+ λ(t)√

ω1ω2
[(ω1ω2q1q2 + p1p2) cosφ(t)

+(ω1q1p2 − ω2p1q2) sinφ(t)] . (2.2)

The Schr̈odinger equation for the time-dependent HamiltonianH is given by

Hψ = ih̄
∂ψ

∂t
. (2.3)

Therefore, inserting equation (2.2) in (2.3) yields

∂2ψ

∂q2
1

+ ∂2ψ

∂q2
2

− 1

h̄2 (ω
2
1q

2
1 + ω2

2q
2
2)ψ − 2

λ(t)

h̄

[√
ω1ω2q1q2ψ − h̄2

√
ω1ω2

∂2ψ

∂q1∂q2

]
cosφ(t)

+2i

h̄
λ(t)

[(
ω1

ω2

) 1
2

q1
∂ψ

∂q2
−

(
ω2

ω1

) 1
2

q2
∂ψ

∂q1

]
sinφ(t) = −2i

h̄

∂ψ

∂t
. (2.4)

In order to solve the above equation we shall introduce the following transformations:
√
ω1q1 = Q1 cosγ+(t)+ P1 sinγ+(t) (2.5a)

p1/
√
ω1 = P1 cosγ+(t)−Q1 sinγ+(t) (2.5b)

√
ω2q2 = Q2 cosγ−(t)+ P2 sinγ−(t) (2.5c)

p2/
√
ω2 = P2 cosγ−(t)−Q2 sinγ−(t) (2.5d)

where

γ±(t) = 1
2[(ω1 + ω2)t ± φ(t)] . (2.6)

From equations (2.4) and (2.5) the wavefunction will take the form

1(t)

[(
∂2ψ̄

∂Q2
1

− ∂2ψ̄

∂Q2
2

)
− 1

h̄2 (Q
2
1 −Q2

2)ψ̄

]
+ 2

λ(t)

h̄2 Q1Q2ψ̄ − 2λ(t)
∂2ψ̄

∂Q1∂Q2
= 2i

h̄

∂ψ̄

∂t

(2.7)

where

1(t) = 1
2(φ̇(t)+ ω2 − ω1) . (2.8)

Let us now introduce the integrability condition, which should be imposed in order to find
the general solution of (2.7), that is

2θλ(t) = (ω1 − ω2 − φ̇(t)) (2.9)

whereθ is an arbitrary non-zero constant. Here we may refer to [14], where this condition
has been derived, the reason for imposing it (where the solution of differential equations
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resulting from the Hamiltonian similar to that given by (1.4) is obtained) having been well
established. Although the integrability condition allows us to give an exact solution in a
compact form; however, it sometimes leads to the complicated situation of studying some
phenomena such as periodic coupling. This can be seen if one tries to find the photon
numbers in the transformed Tavis–Cummings model whereλ(t) = k

√
J − nb(t).

For example, the authors of [13] considered this case by ignoring the integrability
condition, as a result of the complication, and discussed the problem at exact resonance
in the absence of the phase pumpφ(t). The left-hand side of (2.9) is proportional to the
electric field of the laser, while the right-hand side is the energy conservation plus the
laser phase derivative; this in fact represents a sufficient condition for continuous periodic
energy exchange between the modes where the periods are nonlinear functions of time.
Furthermore, if one uses the transformation

x = 1√
h̄
(Q1 cosδ +Q2 sinδ) (2.10a)

y = 1√
h̄
(Q2 cosδ −Q1 sinδ) (2.10b)

where δ is the angle of rotation defined byδ = 1
2 cot−1 θ , then the wavefunction

ψ̄(Q1,Q2, t) → η(x, y, t) and

∂ψ̄

∂Q1
= 1√

h̄

(
cosδ

∂η

∂x
− sinδ

∂η

∂y

)
(2.11a)

∂ψ̄

∂Q2
= 1√

h̄

(
cosδ

∂η

∂y
+ sinδ

∂η

∂x

)
. (2.11b)

By substituting equations (2.10) and (2.11) in (2.7) one obtains

∂2η

∂x2
− ∂2η

∂y2
− (x2 − y2)η = − 2i

λ(t)
sin 2δ

∂η

∂t
. (2.12)

Once we obtain the solution of (2.12), which is easy to solve, we are then in a position to
find the general solution of (2.7); thus

ψ̄mn(Q1,Q2, t) = (πh̄)−
1
2 2− 1

2 (n+m)(n!m!)−
1
2 exp

[
− 1

2h̄
(Q2

1 +Q2
2)

]

×Hn
[

1√
h̄
(Q1 cosδ +Q2 sinδ)

]
Hm

[
1√
h̄
(Q2 cosδ −Q1 sinδ)

]
× exp[−i(n−m)I (t)] (2.13)

with I (t) = √
θ2 + 1

∫ t
0 λ(t

′) dt ′, andH(· · ·) denotes the Hermite polynomial.
On reverting to physical coordinates, we have to calculate the integral

ψnm(q1, q2, t) =
∫ ∞

−∞

∫ ∞

−∞
ψ̄nm(Q1,Q2, t)K̃(q1, q2,Q1,Q2, t) dQ1 dQ2 (2.14)

whereK̃ represents the kernel which can be calculated if one uses (2.5). In this case we
find

K̃(q1, q2,Q1,Q2, t) = (ω1ω2)
1
4 /

[
2h̄π

√
sinγ+(t) sinγ−(t)

]
× exp

(
i

2h̄
[(Q2

1 + ω1q
2
1) cotγ+(t)− 2

√
ω1q1Q1 cosecγ+(t)]

)
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× exp

(
i

2h̄
[(Q2

2 + ω2q
2
2) cotγ−(t)− 2

√
ω2q2Q2 cosecγ−(t)]

)
. (2.15)

If we now insert equations (2.13) and (2.15) into (2.14), after performing the integal we
obtain

ψmn(q1, q2, t) = (ω1ω2)
1
4√

πh̄
2− 1

2 (n+m)(n!m!)
1
2 (cosφ(t)+ i sinφ(t) cos 2δ)

1
2m

×(cosφ(t)− i sinφ(t) cos 2δ)
1
2n exp

[
− 1

2h̄
(ω1q

2
1 + ω2

2q
2
2)

]

exp

(
−i

[
µ−(t)

(
m+ 1

2

)
+ µ+(t)

(
n+ 1

2

)])

×
m∑
l=0

[l!(n− l)!(m− l)!]−1

[
−2i sin 2δ sinφ(t)√

cos2 φ(t)+ sin2 φ(t) cos2 2δ

]l

×H(n−l)
[

1√
h̄

(√
ω1q1 cosδe− 1

2 iφ(t) + √
ω2q2 sinδe

1
2 iφ(t)

(cosφ(t)− i sinφ(t) cos 2δ)
1
2

)]

×H(m−l)

[
1√
h̄

(√
ω2q2 cosδe

1
2 iφ(t) − √

ω1q1 sinδe− 1
2 iφ(t)

(cosφ(t)+ i sinφ(t) cos 2δ)
1
2

)]
(2.16a)

where

µ±(t) = 1
2(ω1 + ω2)t ± I (t) . (2.16b)

The connection between the wavefunction in the Schrödinger representation (psuedo-
stationary state), and the wavefunction in the quasi-coherent state can be found from the
relation

ψαβ(q1, q2, t) =
∞∑
n=0

∞∑
m=0

e− 1
2 (|α2|+|β2|) α

nβm√
n!m!

ψnm(q1, q2, t) . (2.17)

From equations (2.16a) and (2.17), after some calculation, we obtain the following
expression:

ψαβ(q1, q2, t) =
(
ω1ω2

(h̄π)2

) 1
4

exp

[
− 1

2h̄
(ω1q

2
1 + ω2q

2
2)

]

× exp

[√
2

h̄
α(t)

(√
ω1q1 cosδe− 1

2 iφ(t) + √
ω2q2 sinδe

1
2 iφ(t)

)]

× exp

[√
2

h̄
β(t)

(√
ω2q2 cosδe

1
2 iφ(t) − √

ω1q1 sinδe− 1
2 iφ(t)

)]

× exp[−iα(t)β(t) sin 2δ sinφ(t)]

× exp
[− 1

2α
2(t)(cosφ(t)− i sinφ(t) cos 2δ)

]
× exp

[− 1
2β

2(t)(cosφ(t)+ i sinφ(t) cos 2δ)
]

exp
[− 1

2(|α2| + |β2|)] (2.18)
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where

α(t) = α(0) exp(−iµ+(t)) (2.19a)

β(t) = β(0) exp(−iµ−(t)) . (2.19b)

In section 3, we shall turn our attention to constructing the ‘best’ Dirac operators, which
can be used to diagonalize the Hamiltonian (2.2).

3. The diagonalized Hamiltonian and the Green function

In order to diagonalize the Hamiltonian (2.2) we have to find the accurate definition for the
Dirac operators, this can be done by using (2.18) from the previous section.

By differentiating equation (2.18) partially with respect toq1 andq2, and using (2.17),
we may construct two pairs of the Dirac operators in the form

A(t) = (2h̄)−
1
2

[
e

1
2 iφ(t)

√
ω1

(ω1q1 + ip1) cosδ + e− 1
2 iφ(t)

√
ω2

(ω2q2 + ip2) sinδ

]
(3.1a)

B(t) = (2h̄)−
1
2

[
e− 1

2 iφ(t)

√
ω2

(ω2q2 + ip2) cosδ − e
1
2 iφ(t)

√
ω1

(ω1q1 + ip1) sinδ

]
(3.1b)

which satisfy the commutation relations

[A,B] = 0 = [A,B†] (3.1c)

[A,A†] = 1 = [B,B†] (3.1d)

for all values of timet .
Substituting equation (3.1) in (1.4), with aid of (2.1) we have

H

h̄
= (ω1 cos2 δ + ω2 sin2 δ + λ(t) sin 2δ)A†A

+(ω2 cos2 δ + ω1 sin2 δ − λ(t) sin 2δ)B†B

+
(
ω2 − ω1

2
sin 2δ + λ(t) cos 2δ

)
(A†B + B†A)+ ∂F2

∂t
(3.2)

whereF2 is the generating function given by

2F2 = φ(t)[sin 2δ(A†B + B†A)+ cos 2δ(B†B − A†A)] . (3.3)

From equations (3.2) and (3.3), we get

H

h̄
= (ω1 cos2 δ + ω2 sin2 δ + λ(t) sin 2δ − φ̇(t)

2
cos 2δ)A†A

+(ω2 cos2 δ + ω1 sin2 δ − λ(t) sin 2δ + φ̇(t)

2
cos 2δ)B†B

+
[

1

2
(ω2 − ω1 + φ̇(t)) sin 2δ + λ(t) cos 2δ

]
(A†B + B†A) . (3.4)

By using the integrability condition given by (2.9), we may obtain the diagonalized
Hamiltonian in the following form:

H

h̄
= µ̇+(t)A†A+ µ̇−(t)B†B (3.5)
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whereµ±(t) is defined by (2.16b), and the dot indicates the first derivative of the function
µ±(t) with respect to time.

Now we shall extend our progress to include calculation of the Green function, which
can be obtained if one uses the formula

G(q1, q2, q̄1, q̄2, t) = 1

π2

∫ ∞

−∞
ψαβ(q1, q2, t)ψ

∗
αβ(q̄1, q̄2, 0) d2α d2β (3.6)

whereψ∗
αβ(q̄1, q̄2, 0) is the complex conjugate of (2.18) at the timet = 0. However, we

may obtain the Green function by using the solution in the Heisenberg picture; for the
Hamiltonian (2.2) this solution takes the form

q1(t) = q1(0)[cosI (t) cosγ+(t)− sinI (t) sinγ+(t) cos 2δ]

+p1(0)

ω1
[cosγ+(t) cosI (t) cos 2δ + cosI (t) sinγ+(t)]

+ p2(0)√
ω1ω2

sin 2δ sinI (t) cosγ+(t)−
√
ω2

ω1
q2(0) sin 2δ sinI (t) sinγ+(t)

(3.7a)

p1(t) = p1(0)[cosI (t) cosγ+(t)− sinI (t) sinγ+(t) cos 2δ]

−ω1q1(0)[cosγ+(t) cos 2δ sinI (t)+ cosI (t) sinγ+(t)]

−√
ω1ω2q2(0) sin 2δ sinI (t) cosγ+(t)−

√
ω1

ω2
p2(0) sin 2δ sinI (t) sinγ+(t)

(3.7b)

q2(t) = q2(0)[cosI (t) cosγ−(t)+ cos 2δ sinI (t) sinγ−(t)]

−p2(0)

ω2
[cos 2δ cosγ−(t) sinI (t)− cosI (t) sinγ−(t)]

+ p1(0)√
ω1ω2

sin 2δ sinI (t) cosγ−(t)−
√
ω1

ω2
q1(0) sin 2δ sinI (t) sinγ−(t)

(3.7c)

p2(t) = p2(0)[cosI (t) cosγ−(t)+ cos 2δ sinI (t) sinγ−(t)]

+ω2q2(0)[cos 2δ cosγ−(t) sinI (t)− sinγ−(t) cosI (t)]

−√
ω1ω2q1(0) sin 2δ sinI (t) cosγ−(t)−

√
ω2

ω1
p1(0) sin 2δ sinI (t) sinγ−(t)

(3.7d)

whereγ±(t) is given by (2.6).
It is easy to show that [qi, pi ] = ih̄δij , with δij = 1 if i = j and zero otherwise. The

calculation of the Green function gives the following result:

G(q1, q2, q̄1, q̄2, t) =
[ω1ω2

l

] 1
2

exp

(−iω1

2h̄l
[sin(ω1 + ω2)t + sin2 δ sin(2I (t)− φ(t))

− cos2 δ sin(2I (t)+ φ(t))]q2
1

)
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× exp

(−iω2

2h̄l
[sin(ω1 + ω2)t + cos2 δ sin(2I (t)+ φ(t))

− sin2 δ sin(2I (t)− φ(t))]q2
2

)

× exp

[(
i
√
ω1ω2

2h̄l
sin 2δ sin 2I (t)

)
q1q2

]

× exp

(−iω1

h̄l

[
sinγ−(t) cosγ+(t)+ sin2 I (t) sinφ(t) cos2 2δ

−1

2
sin 2I (t) cosφ(t) cos 2δ

]
q̄2

1

)

× exp

(−iω2

h̄l

[
sinγ+(t) cosγ−(t)− sin2 I (t) sinφ(t) cos2 2δ

+1

2
sin 2I (t) cosφ(t) cos 2δ

]
q̄2

2

)

× exp

(
2i

√
ω1ω2

h̄l

[
sin 2δ sinI (t)

(
cos2 δ cos(I (t)+ φ(t))

+ sin2 δ cos(I (t)− φ(t))
)
q̄1q̄2

])

× exp

(
2iω1

h̄l

[
sin2 δ sin(I (t)+ γ−(t))− cos2 δ sin(I (t)− γ−(t))

]
q1q̄1

)

× exp

(
2iω2

h̄l

[
cos2 δ sin(I (t)+ γ+(t))− sin2 δ sin(I (t)− γ+(t))

]
q2q̄2

)

× exp

[(−2i
√
ω1ω2

h̄l
sin 2δ sinI (t) cosγ+(t)

)
q̄1q2

]

× exp

[(−2i
√
ω1ω2

h̄l
sin 2δ sinI (t) cosγ−(t)

)
q1q̄2

]
(3.8)

wherel is given by

l = [cos(ω1 + ω2)t − cos2 δ cos(2I (t)+ φ(t))− sin2 δ cos(2I (t)− φ(t))] . (3.9)

As a special case if we takeλ(t) to be constant, andφ(t) = ωt , we obtain equation (3.7)
of [20].

4. Squeezing

Now we shall employ the solution in the Heisenberg picture to discuss the squeezing
phenomena. This phenomenon is characterized by fluctuations in the quadrature of the
field being less than the vacuum fluctuation [21, 22]. To examine the squeezing one needs
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to calculate the quadrature variances in each mode; this can be done by using (3.7). To do
so, let us rewrite equation (3.7) in the Dirac representation; thus

a(t) = e−iγ+(t)[a(0)(cosI (t)− i cos 2δ sinI (t))− i sin 2δ sinI (t)b(0)] (4.1a)

b(t) = e−iγ−(t)[b(0)(cosI (t)+ i sinI (t) cos 2δ)− i sin 2δ sinI (t)a(0)] . (4.1b)

If the system is considered to be initially in the coherent or in the vacuum states, we shall
find there is no squeezing, this of course is due to the nature of the system. Therefore we
shall consider the following cases.

4.1. A two-mode squeezed coherent state

A two-mode squeezed coherent state is defined [23] as

|α, β, r〉 ≡ D̂(α)D̂(β)Ŝ(r)|0, 0〉 (4.2)

where the squeeze operatorŜ(r) is given by

Ŝ(r) = exp[r(a†b† − ab)] (4.3)

and the Glauber displacement operatorsD̂(α) andD̂(β) [24] by

D̂(α) = exp(αa† − α∗a) (4.4a)

D̂(β) = exp(βb† − β∗b) . (4.4b)

The squeezing operators provide a Bogoliubov transformation of the annihilation operators
as

Ŝ(r)−1aŜ(r) = a coshr + b† sinhr (4.5a)

Ŝ(r)−1bŜ(r) = b coshr + a† sinhr (4.5b)

while the Glauber displacement operatorŝD(α) and D̂(β) produce the operator
transformations

D̂−1(α)aD̂(α) = a + α (4.6a)

D̂−1(β)bD̂(β) = b + β . (4.6b)

Note that for convenience the squeeze parameterr has been taken to be real.
Now let us define two quadrature operators

X1 = 1
2(a + a†) (4.7a)

Y1 = 1

2i
(a − a†) (4.7b)

X2 = 1
2(b + b†) (4.7c)

Y2 = 1

2i
(b − b†) . (4.7d)

Then, the quadrature variances can be written as

1X1
2 = 1

4

[
cosh 2r − (sin 2δ sin 2I (t) sin 2γ+(t)+ sin 4δ sin2 I (t) cos 2γ+(t)) sinh 2r

]
(4.8a)

1Y1
2 = 1

4

[
cosh 2r + (sin 2δ sin 2I (t) sin 2γ+(t)+ sin 4δ sin2 I (t) cos 2γ+(t)) sinh 2r

]
.

(4.8b)
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For the second mode we have

1X2
2 = 1

4

[
cosh 2r − (sin 2δ sin 2I (t) sin 2γ−(t)− sin 4δ sin2 I (t) cos 2γ−(t)) sinh 2r

]
(4.9a)

1Y2
2 = 1

4

[
cosh 2r + (sin 2δ sin 2I (t) sin 2γ−(t)− sin 4δ sin2 I (t) cos 2γ−(t)) sinh 2r

]
.

(4.9b)

From equation (4.8) we may conclude that, the squeezing is occuring in the first
quadrature provided the term multiplied by sinh 2r is positive; however, as a result of the
oscillating terms, exchange between the two quadratures is excepted. The same conclusion
would apply to the second mode, see equation (4.9). As a special case, if we takeθ → 0,
so thatδ = π

4 andλ becomes constant, then equation (4.8) gives

1X1
2 = 1

4 [cosh 2r − sin 2λt sin 2ω1t sinh 2r] (4.10a)

1Y1
2 = 1

4 [cosh 2r + sin 2λt sin 2ω1t sinh 2r] . (4.10b)

The above equations can be compared with equations (24a), (24b) of [25]. On the other
hand, if we take the coupling parameterλ to be constant, whileφ(t) = −(ω1 + ω2)t . The
quadrature variances for the first mode ‘a’ become

1X1
2 = 1

4

[
cosh 2r − 2ω1λ

(ω2
1 + λ2)

sin2
√
ω2

1 + λ2t sinh 2r

]
(4.11a)

1Y1
2 = 1

4

[
cosh 2r + 2ω1λ

(ω2
1 + λ2)

sin2
√
ω2

1 + λ2t sinh 2r

]
(4.11b)

which shows that forr > 0 we have no exchange between the quadrature variances and
therefore the squeezing will remain in the first quadrature. The same argument can be
applied for the second mode ‘b’ provided thatφ(t) = (ω1 +ω2)t andλ is constant. In this
case the result will be the same as the result given by equations (4.11a), (4.11b), but with
ω2 replaced byω1.

4.2. The even coherent state

In this subsection we shall discuss the even coherent state for the time-dependent frequency
converter model given by (1.4). This state is defined for a single mode as follows:

|ξ〉 = Nα

2∑
i=1

|αeiφi 〉 φ1,2 = π, 2π (4.12a)

and

Nα = 1
2 exp

(
1
2|α|2) √

sech|α|2 . (4.12b)

Similarly we can define the state for the second mode ‘b’. By calculating the quadrature
variances for the first mode ‘a’ we find

1X1
2 = 1

4 + 1
2|α|2|f (t)|2[cos 2(γ+(t)+ γ (t))+ tanh|α|2]

+ 1
2|β|2|g(t)|2[cos 2γ+(t)+ tanh|β|2] (4.13a)

1Y1
2 = 1

4 − 1
2|α|2|f (t)|2[cos 2(γ+(t)+ γ (t))− tanh|α|2]

− 1
2|β|2|g(t)|2[cos 2γ+(t)− tanh|β|2] (4.13b)
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where

γ (t) = tan−1(cos 2δ tanI (t)) (4.13c)

and

f (t) = (cosI (t)− i cos 2δ sinI (t))e−iγ+(t) (4.14a)

g(t) = −i sin 2δ sinI (t)e−iγ+(t) . (4.14b)

From equations (4.13a), (4.13b) it follows that, asα and β → 0, the fluctuation in
both quadratures becomes zero, and then the system will reach the minimum uncertainty.
However, for large value ofα andβ the fluctuations in theX1 andY1 quadrature become
larger compared with the vacuum-state (or the coherent-state) value which is equal to1

4.
In the meantime, fort = 0 the reduction of the fluctuations occurs in1Y1

2
, while the

fluctuations in1X1
2

are enhanced. On the other hand, fort > 0 the reduction of the
fluctuations starts to appear in the first quadrature1X1

2
(see, for example, the case where

α = β), while the fluctuations in the second quadrature1Y1
2

is enhanced. This shows that,
as a result of the oscillation terms the squeezing will start to exchange between the two
quadratures.

5. The correlation function

From the nature of the frequency converter model, the system under consideration is always
in coherence, this can be seen if one examines the Glauber second-order correlation function
against the coherent state or against the vacuum state. However, the system can show anti-
bunching as well as bunching when we measureg(2)a (t) in the number state. To see this, let
us first calculate theg(2)a (t) which are defined by

g(2)a (t) = 1 + 1na
2 − 〈na〉
〈na〉2

. (5.1)

From equations (4.1a), (4.1b) and (5.1) we have

g(2)a (t) = 1 + 2|f (t)|2|g(t)|2na(0)nb(0)− |f (t)|4na(0)− |g(t)|4nb(0)
(|f (t)|2na(0)+ |g(t)|2nb(0))2 (5.2)

wherena(0) andnb(0) are respectively the photon numbers for modesa andb at the time
t = 0, while f (t) andg(t) are given by (4.14).

Now if we consider the case whenna = nb = 1, then equation (5.2) gives

g(2)a (t) = (4θ2 sin2 I (t)+ sin2 2I (t))/(1 + θ2)2 . (5.3)

It is obvious that the value of the functiong(2)a (t) in the above equation is always6 1,
which shows anti-bunching for the system whatever the value of the parameterθ and the
oscillating function. On the other hand, if we increase the photon numbersna and nb,
in (5.2) then the situation will be different: bunching would appear for some value of both
θ and the oscillating function. For example, whenna = nb = 2, equation (5.2) gives

g(2)a (t) = 1
2 + 3 sin2 I (t)(θ2 + cos2 I (t))/(1 + θ2)2 . (5.4)

By taking the maximum value of sin2 I (t), the system shows partial coherence behaviour,
providedθ = 1, where the functiong(2)a (t) → 1.25. The same conclusion is valid, when
θ = 0, but for different values of the time. For a fixed value oft , we find that the parameter
θ plays the role of decreasing or increasing the value of the functiong(2)a (t). Thus we may
conclude from the above analysis that the existence of the parameterθ (which is the result
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of the integrability condition) does play a role (but not a significant one) when we measure
the second-order correlation function with respect to the number state.

We now turn our attention to examining the correlation functiong(2)a (t) by employing
the even coherent state. From equations (4.1a) and (4.12) we find

〈na(t)〉 = |f (t)|2|α|2 tanh|α|2 + |g(t)|2|β|2 tanh|β|2 (5.5)

1na
2
(t)− 〈na(t)〉 = |f (t)|4|α|4 sech2 |α|2 + |g(t)|4|β|4 sech2 |β|2

+2|g(t)|2|f (t)|2|α|2|β|2 tanh|β|2 tanh|α|2

+α2β∗2f 2(t)g∗2(t)+ α∗2β2g2(t)f ∗2(t) (5.6)

whenα = β the second-order correlation functiong(2)a (t) becomes

g(2)a (t) = 1 + 2|f (t)|2|g(t)|2 + (f 2(t)g∗2(t)+ g2(t)f ∗2(t)) coth2 |α|2

+(|f (t)|4 + |g(t)|4) cosech2 |α|2 . (5.7)

For largeα equation (5.7) reduces to

g(2)a (t) = 1 + 4θ2

(1 + θ2)2
sin4 I (t) . (5.8)

From equation (5.8) we can conclude that, by invoking the even coherent state to calculate
the Glauber second-order correlation functiong(2)a (t), and as a result of the time dependent
coupling parameterλ(t) and the phase pumpφ(t), the functiong(2)a (t) shows oscillatory
behaviour, as well as thermal distribution at the maximum value of the oscillating function
whenθ = 1. This result cannot be obtained if the parameterθ is zero.

6. Quasi-probability distribution

In this section we pay attention to calculate the quasi-probability phase-space distributions,
for one single mode ‘a’ connected with the correlated squeezed operator (4.3). There are
three types of the distribution functions, namely theP -representation,W -Wigner andQ-
functions. To find one of these functions we have to calculate the characteristic function
Cp(ξ, t) which are defined as follows:

Cp(ξ, t) = Tr(ρ̂(0) exp(ξa†(t)) exp(−ξ ∗a(t))) (6.1)

where ρ̂ is the density matrix, for the state (4.2). From equations (6.1) and (4.1a) the
characteristic function takes the form

Cp(ξ, t) = exp[− sinh2 r|ξ |2 + 1
2(ξ

∗2f (t)g(t)+ ξ2f ∗(t)g∗(t)) sinh 2r]

× exp(ξ ᾱ∗(t)− ξ ∗ᾱ(t)) (6.2)

whereᾱ(t) is the mean value of the operatora(t) with respect to the squeezed coherent state
(4.2). Having obtained the characteristic function, we are therefore in position to calculate
the quasi-probability distribution functionsP -representation,W -Wigner andQ-functions.
These functions are given by P(α, t)

W(α, t)

Q(α, t)

 = π−2
∫ ∞

−∞
d2ξ exp(αξ ∗ − α∗ξ)

 CP (ξ, t)

CW(ξ, t)

CQ(ξ, t)

 (6.3)
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whereCW(ξ, t) = exp(− 1
2|ξ |2) Cp(ξ, t) andCQ(ξ, t) = exp(−|ξ |2)Cp(ξ, t). Note that at

t = 0 theP -function has the form of the Fourier transform of a Gaussian with negative
width. The resulting non-analytic behaviour of theP -representation is a symptom of the
non-classical correlations between thea and b modes. On the other hand, fort > 0 the
P -function can be obtained, but under the restricted condition

sechr <
θ2 + cos 2I (t)

θ2 + 1
(6.4)

such thatθ ∈ (−∞,−1) U(1,∞). In this case we have

P(α, t) = 1

π
(sinh4 r − |f (t)|2|g(t)|2 sinh2 2r)−

1
2 exp(−l1|ᾱ(t)− α|2) (6.5a)

where

l1 = [sech2 r + |f (t)||g(t)| cosech 2r sin(2γ+(t)+ γ (t)+ ν(t))]

(tanh2 r − 4|f (t)|2|g(t)|2) (6.5b)

ν(t) is an arbitrary time-dependent phase andγ (t) is defined by (4.13c). From equation
(6.5) we can mention that theP -representation shows Gaussian behaviour with maximum
value atᾱ(t) = α. However, when the value of the parameterθ occurs within the interval
[−1, 1], theP -representation does not exist for some values of the time, where the inequality
given by (6.4) will be violated. Therefore we can say that the existence of the parameter
θ gives us an advantage in finding theP -representation within a certain interval of the
parameterθ for all periods of the time.

The other two functions, theW -Wigner andQ-functions are found to be

W(α, t) = 2

π

sech 2r√
1 − 4 tanh2 2r|f (t)|2|g(t)|2

exp(−2l2|ᾱ(t)− α|2) (6.6a)

where

l2 = sech 2r
[1 + 2 tanh 2r|f (t)||g(t)| sin(2γ+(t)+ γ (t)+ ν(t))]

[1 − 4 tanh2 2r|f (t)|2|g(t)|2]
(6.6b)

and

Q(α, t) = 1

π
(cosh4 r − sinh2 2r|f (t)|2|g(t)|2)− 1

2 exp(−2l3|ᾱ(t)− α|2) (6.7a)

where

l3 = sech2 r
[1 + 2 tanhr|f (t)||g(t)| sin(2γ+(t)+ γ (t)+ ν(t))]

[1 − 4 tanh2 r|f (t)|2|g(t)|2]
. (6.7b)

Equations (6.6) and (6.7) show Gaussian behaviour with maximum value atᾱ(t) = α.
In fact the Gaussian form of these functions (6.7b) means that their contours may be used
to map out the phase dependence of the field fluctuations. For example, the contours of
the Wigner function give the variances in the field quadratures, while the contours of the
Q-function provide the anti-normally ordered variances in the field quadratures.

Now we shall find the mean value of the normally ordered product of an arbitrary
number of factorsa† and a. We may express this average in terms of the characteristic
function (6.2) by means of the formula

Tr{ρ̂(t)a†nam} =
(
∂

∂ξ

)n (
− ∂

∂ξ ∗

)m
Cp(ξ, t)|ξ=ξ∗=0 . (6.8)
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If we substitute equation (6.2) in (6.8) we find that

Tr(ρ̂(t)a†nam) =
(

1

2
sinh 2r

) 1
2 (m+n)

(f (t)g(t))
1
2 (m−n) exp

[
iπ

2
(m− n)

]

×
m∑
l=0

m!n!

[l!m− l!n− l!]
(tanhr)l|f (t)g(t)|(n−l)

×H(m−l)

[
e− 1

2 iπ ᾱ(t)√
2f (t)g(t) sinh 2r

]
H(n−l)

[
e

1
2 iπ ᾱ∗(t)√

2f ∗(t)g∗(t) sinh 2r

]
. (6.9)

As a special case, whenn = m we find that

Tr

[
ρ(t)

a†a!

(a†a − n)!

]
=

(
1

2
sinh 2r

)n
(n!)2

n∑
l=0

[l!(n− l!)2]−1

×(tanhr)lHl

(
e−i π2 ᾱ(t)√

2f (t)g(t) sinh 2r

)
Hl

(
e

1
2 iπ ᾱ∗(t)√

2f ∗(t)g∗(t) sinh 2r

)
. (6.10)

Finally we shall calculate the matrix elements of the density operatorρ̂ in the n-quantum
representation. To do so one may use theW -Wigner function (6.6) together with the formula

〈β̃|ρ̂(t)|β̃〉 = 2
∫

d2α exp(−2|β̃ − α|2) W(α, t) . (6.11)

However, the matrix elements of the density operatorρ̂(t) can also be deduced from (6.7),
since

〈α|ρ̂(t)|α〉 = πQ(α, t) . (6.12)

By expanding the exponential term in (6.7a) as a power series and using (6.12) we have

〈m|ρ̂(t)|n〉 =
√
n!

m!
(2l3(t)ᾱ(t))

m−n(1 − 2l3)
n exp(−2l3|ᾱ(t)|2)

×L(m−n)
n

(
−4l23(t)

|ᾱ(t)|2
(1 − 2l3(t))

)
(6.13)

=
√
m!

n!
(2l3(t)ᾱ

∗(t))n−m(1 − 2l3)
m exp(−2l3|ᾱ(t)|2)

×L(n−m)m

(
−4l23(t)

|ᾱ(t)|2
(1 − 2l3(t))

)
(6.14)

where theL(n−m)m (z) are the associated Laguerre polynomials, andl3 is given by (6.7b).
The right-hand side of (6.14) may be obtained from the right-hand side of (6.13) by

taking the complex conjugate of the latter and interchangingn andm; this relation is a
reflection of the Hermiticity requirement

〈m|ρ̂(t)|n〉 = (〈n|ρ̂(t)|m〉)∗ . (6.15)

Now if we setn = m, in (6.13) or (6.14) we obtain the probability of findingn quanta in
the a mode; thus

〈n|ρ̂(t)|n〉 = (1 − 2l3)
n exp(−2l3|ᾱ(t)|2)Ln

[
−4

l23(t)|ᾱ(t)|2
(1 − 2l3(t))

]
. (6.16)
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Note that the matrix elements of the density operatorρ̂(t) can also be rewritten in an
alternative form, namely

〈m|ρ̂(t)|n〉 = 1√
l4(t)

exp

(
− cosh2 r

|ᾱ(t)|2
l4(t)

)

× exp

[ −i

2l4(t)
|f (t)g(t)| sinh 2r

(
ā∗2(t)e−i(2γ+(t)+γ (t)) − ᾱ2(t)ei(2γ+(t)+γ (t)))]

×
n∑
l=0

√
m!n!

[l!m− l!n− l!]
2−(l+m)

[
(1 − 4|f (t)||g(t)|) sinh 2r

|f (t)g(t)|
]l

× exp

[
i

2
(2γ+(t)+ γ (t))(n−m)

] [ |f (t)||g(t)| sinh 2r

(cosh4 r − |f (t)g(t)|2 sinh2 2r)

] 1
2 (m+n)

× exp
[
i
π

2
(n−m)

]
×H(n−l)

[
ᾱ∗(t) cosh2 re− 1

2 i(2γ+(t)+γ (t)) − i|f (t)||g(t)| sinh 2re
1
2 i(2γ+(t)+γ (t))

i
√
l4(t)|f (t)||g(t)| sinh 2r

]

×H(m−l)

[
ᾱ(t) cosh2 re

1
2 i(2γ+(t)+γ (t)) + i|f (t)||g(t)| sinh 2re− 1

2 i(2γ+(t)+γ (t))

−i
√
l4(t)|f (t)||g(t)| sinh 2r

]
(6.17)

where

l4(t) = (cosh4 r − sinh2 2r|f (t)|2|g(t)|2) . (6.18)

The complication in the above expression is due to the absence of the time-dependent
phaseν(t).

7. Conclusion

In the present paper we have considered the problem of the time-dependent frequency
converter with arbitrary coupling parameter and phase pump. The solution of the whole
problem is built up on the integrability condition (2.9), which shows continuous periodic
energy exchange between the modes with the periods being nonlinear function of time. The
main purpose of the present work is to fill the gap of other papers which concentrated on
the statistical properties of the system, see for example [11–14]. The paper was divided
into two parts, the first part being devoted to giving the exact solution of the wavefunction
in the Schr̈odinger picture. The result was then used to find the wavefunction in the quasi-
coherent state. We also managed to deduce the accurate definition for the Dirac operators,
which were then used to diagonalize the Hamiltonian (1.4). The Green function for the
system was obtained by employing the solution in the Heisenberg picture, and we showed
that the results given in [20] can be deduced from the present result. In the second part we
examined the squeezing phenomenon, where two different cases were considered. The first
case was an examination of the squeezed coherent state, while the second was of the even
coherent state. The system showed fluctuations in both cases, as well as exchanging between
the quadrature variances. Our consideration was also extended to include the correlation
function, which was examined in the above two cases, in which we saw that the parameter
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θ plays a dominant role in controlling the system to reach the thermal distribution in the
case of the even coherent state. Finally, we considered the quasi-probability distribution
functions, where theP -representation was calculated under a restricted condition of the
parameterθ . We also showed that the distribution functions exhibit Gaussian behaviour
with maximum value at̄α(t) = α. The explicit form for the normally ordered product and
the matrix elements of the density operatorρ̂(t) were given.
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